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Abstract

In this paper, the optimal passive control of adjacent structures interconnected by nonlinear hysteretic devices is studied.

For nonlinear devices the versatile Bouc–Wen model is adopted, whereas for seismic excitation a Gaussian zero mean

white noise and a filtered white noise are used. To solve nonlinear equations of motion a simplified solution is carried out

using a stochastic linearization technique. The problem of the optimal design of the devices is studied and solved in the case

of a simple two-degrees-of-freedom model. In the optimization problem, an energy criterion associated with the concept of

optimal performance of the hysteretic connection is used. The energy performance index is defined as a measure of the

ratio between the energy dissipated in the device and the seismic input energy on the structure. Only two parameters are

considered in the optimization problem of the device yielding force and elastic stiffness. The rigid and elastic plastic models

for the device are studied and compared. The design procedure leads to very simple indications on the optimal values of the

device’s mechanical parameters; these optimal values substantially depend only on the mass and stiffness ratio between the

two structures. Finally, some concise results about the effectiveness of the hysteretic connection for the seismic response

mitigation of coupled structures are also given.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The control of structural vibrations can be done by using innovative techniques, such as passive, hybrid,
semi-active and active control [1]. In civil engineering, the most useful technologies to provide seismic
protection of structures are based on the passive control that can be provided through (i) base isolation, (ii)
energy dissipation, and (iii) tuned mass dampers. Among these different passive control technologies, the one
based on energy dissipation deserves special attention. This technique is based on the artificial increase of the
dissipative capacity of the structural system through special dissipating devices. In order to obtain the most
desiderable energy dissipation, the devices have to be placed in proper locations where relative motion between
components is expected. Among the different situations in which energy dissipating devices can be beneficial
[2], use of dissipative connections between either adjacent structures or adjacent parts of the same structure
has received special attention [3–6]. A typical example is the one of contiguous buildings, which are usually
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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separated by structural joints and connected through of dissipative devices. Another example is the dissipative
coupling of wall and frame, where the wall acts as stiffening element. In both situations, it is essential that the
two structures have different dynamic properties, so that relative movements may develop during their
dynamic response.

The concept of dissipative connection between adjacent structures has found several application in Japan,
[7–10]. Dissipative connections have also been proven beneficial in preventing pounding damage between
adjacent buildings [11].

Typically, passive energy dissipation devices are modelled as linear elements, e.g. viscoelastic [1,12] and fluid
viscous dampers [1,13], or nonlinear hysteretic elements, e.g. steel elastic plastic [1,14–16] and friction dampers
[1,17–18].

In a large part of the available literature referring to adjacent structures coupled with passive dampers,
the dampers are modelled as linear elements, with constant viscous damping and, in some cases, also
constant stiffness arranged in parallel and series [19–22]. The principal aim of these works is to provide
indications about the optimal design of the dissipative connection using different design principles and
using both two and multi dof adjacent systems. Only few works are present in the literature that involve
nonlinear devices with an elastic or rigid plastic behavior, sometimes referred to as hysteretic dampers.
Typically, these studies are about coupled structures modelled as multi dof systems. As an example, the work
of Ni et al. [23–24] show a parametric study of two adjacent multi dof systems, having 20 and 10 floors,
respectively, in order to evaluate the optimal parameters of hysteretic connections and their optimal positions
and numbers.

Among the very few works which give simple, concise and general information about optimal design of
hysteretic devices, the work by De Angelis and Ciampi [3] has to be cited, where a rational design criterion for
the hysteretic connection is proposed.

This study aims to present a simple approach to the optimal design of hysteretic dampers connect-
ing two adjacent structures, each modelled as a single dof system, and excited by ground motion. In order
to describe the nonlinear behavior of the damper the Bouc–Wen model is adopted and only two para-
meters, (the yield force and elastic stiffness), are considered in the optimization procedure. The optimum
parameters of the hysteretic damper are determined by an energy criterion [2]. The optimal design of both a
rigid plastic device, RPD, defined by one parameter, the yield force, and an elastic plastic device, EPD, defined
by two parameters, the elastic stiffness and the yield force, is considered. The results for both devices are
compared, leading to useful information for the optimal design. The seismic analysis is developed by a
stochastic approach, and a simplified solution of the nonlinear problem is carried out by stochastic
linearization [25,26]. In order to obtain brief results a white noise, WN, ground excitation is used first. Then,
the optimal design procedure is extended by using a more realistic filtered white noise, FWN, ground
excitation.
2. Coupled structure systems

2.1. Structural model

The most basic representation of the coupled structures problem is the two-degrees-of freedom system (2-
dofs) as shown in Fig. 1. The two structures, each modelled as an elastic one-dof, are connected with a
dissipative coupling link. This simple model is used for investigating the effectiveness of using dissipative
passive devices as connections between two structures, to reduce dynamic response of each structural system.
Such case is then compared to the case in which the structures are rigidly connected and the case in which they
are completely independent, as proposed in [3].

The equations of motion for such a system, excited by a base acceleration, €ygðtÞ, are:

m1 €y1 þ c1 _y1 þ k1y1 ¼ F ðtÞ �m1 €ygðtÞ;

m2 €y2 þ c2 _y2 þ k2y2 ¼ �F ðtÞ �m2 €ygðtÞ

(
, (1)
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Fig. 1. The structural model.
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where mi, ki and ci (i ¼ 1, 2) are the mass, stiffness and damping coefficient, respectively, yi (i ¼ 1, 2), are the
relative displacements, while F(t) is the force in the connection. Introducing the following parameters:
m1: mass of the first structure
T1 ¼ 2p=o1 ¼ 2pðm1

.
k1Þ

1=2 : natural period of the first structure
xi ¼ ci=2mioi (i ¼ 1, 2): damping ratio (both assumed 5%)
l ¼ k2=k1 : stiffness ratio
m ¼ m2=m1 : mass ratio
~F ðtÞ ¼ F ðtÞ=m1 : normalized force in the passive device connection
the structural model is completely described by:

€y1 þ 2x1o1 _y1 þ o2
1y1 ¼

~F ðtÞ � €ygðtÞ;

€y2 þ 2x2o2 _y2 þ o2
2y2 ¼

~F ðtÞ

m
� €ygðtÞ;

8><
>: (2)

where o2
2 ¼ o2

1l=m.
2.2. The hysteretic devices

Let us assume that two adjacent structures shown in Fig. 1 are interconnected by a nonlinear hysteretic
damping device. These devices present a high capacity of hysteresis damping, through plastic deformation or
friction, and are characterized by stable and non-degrading mechanical behavior.

The Bouc–Wen model [26] has been and still is commonly used in the field of structural engineering in many
applications, especially in the random vibration field. This success is principally related to its versatility and
especially to the possibility of expressing the linearization coefficients in a closed form, as will be discussed in
the next paragraphs.

Using the Bouc–Wen model to represent hysteretic behavior, the restoring force has the following
expression:

F ðtÞ ¼ C1Dyþ C2z, (3)

with Dy ¼ y2 � y1 and where:

C1 ¼ n
Fy

uy

, (4)
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C2 ¼ ð1� nÞF y, (5)

where n is the post-to-pre-yield stiffness ratio, Fy the yield force and uy the yield displacement.
The function z is related to Dy through the following first-order nonlinear differential equation:

_zþ gðz;D _yÞD _y ¼ 0, (6)

with:

gðz;D _yÞ ¼ g sgnðD _yÞzjzjn�1 þ bjzjn � A, (7)

where A, b, g and n are model parameters.
Usually, Eq. (7) is expressed in non-dimensional form as ḡðz;D _yÞ ¼ gðz;D _yÞuy, with dimensionless

parameters Ā ¼ Auy, b̄ ¼ buy, ḡ ¼ guy and n. Parameters b̄ and ḡ control the shape of the hysteresis loop, Ā

the restoring force amplitude, and n the smoothness of the transition from elastic to plastic response.
As shown in Fig. 2, if the parameters respect the conditions b̄þ ḡ ¼ 1 and Ā ¼ 1, Fy and uy have the

meaning of yield force and yield displacement, respectively.
The Bouc–Wen model is useful for its capability of reproducing different types of deformation paths; in

fact, by properly selecting the model parameters, it can describe different constitutive laws, softening as well as
hardening, with and without degradation.

Since typical experimental hysteresis loops, e.g. steel EPDs, Fig. 3, show small values of post-yield stiffness,
the parameter n is fixed equal zero. Therefore, the restoring force can be expressed:

F ðtÞ ¼ C2z ¼ F yz, (8)

~F ðtÞ ¼ ðF y=m1Þz. (9)

In general, the parameters describing the Bouc–Wen hysteretic model are Ā, b̄, ḡ, n Fy, kc, n. In design
problems, some parameters can be fixed a priori, while others are the design variables. In this paper, the
dimensionless model parameters of the connecting damper are assumed to be Ā ¼ 1, b̄ ¼ 0:5, ḡ ¼ 0:5 and
n ¼ 1, n ¼ 0, whereas Fy, yielding force, and kc ¼ Fy/uy, elastic stiffness, are selected by using an optimal
design criterion.
-6 0 6
-1.2

0

1.2

Δy

z

Fy

uy

Fig. 2. z(y)�Dy graph for Ā ¼ 1, b̄ ¼ 0:5, ḡ ¼ 0:5, n ¼ 1. Fy and uy have the meaning of yield force and yield displacement.
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Fig. 3. Experimental force–displacement relation for a steel elastic plastic device.
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2.3. Seismic excitation model

In the field of structural engineering more and more frequently probabilistic methodologies are used in
order to asses, in a rational way, the structural safety. Especially in the field of structural dynamics, the
excitations related to natural phenomena, such as seismic excitation, have an unquestionable probabilistic
character.

In this study, a Gaussian zero mean white noise, WN, stochastic input, characterized by its power spectral
density S0 is first considered. Subsequently, the ground excitation is also modelled as a filtered white noise,
FWN, corresponding to the Kanai–Tajimi spectrum [27–28]. The time domain equation of the Kanai–Tajimi
filter is

€yg þ 2xgog _yg þ o2
gyg ¼ � €ybr, (10)

where €ybr is the excitation at the bedrock.
When approaching zero frequency, earthquakes have low energy contents. To better represent the real

frequency content of seismic excitations at low frequencies, an additional filter is typically prepended to the
Kanai–Tajimi filter [29].

In time domain analysis, the equations representing the two filters are

€yg þ 2xgog _yg þ o2
gyg ¼ 2xpop _yp þ o2

pyp þ €ybrðtÞ;

€yp þ 2xpop _yp þ o2
pyp ¼ � €ybrðtÞ:

(
(11)

Here, the bedrock excitation is considered a zero mean Gaussian WN process, E½ €ybrðtÞ� ¼ 0, where E½��

indicates the expected value, with autocorrelation E½ €ybrðsÞ €ybrðtÞ� ¼ 2pdðs� tÞ.
The parameters of the first filter are assumed as og ¼ 12 rad/s and xg ¼ 0.6 (Soong and Gregoriou [30]),

whereas the second filter has op ¼ 2.2 rad/s and xp ¼ 0.6 (Clough and Penzien [29]). Fig. 4 shows the power
spectral density of the two seismic excitation models. It is clear that the second model (11), shows a better
representation of seismic excitation at low frequencies with respect to the first model (10).

2.4. Stochastic equivalent linearization

Since the connecting damper is a nonlinear hysteretic device, Eq. (2) are also nonlinear. Having considered a
stochastic seismic excitation, it is possible to find a simplified solution of Eq. (2) by means of a stochastic
linearization technique [23,25]. In fact, when the seismic excitation is a zero-mean stationary Gaussian process,
the equations of motion are directly linearized in closed form, and the coefficients of the linearized system are
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obtained as algebraic functions of the response variable statistics. In this case, Eq. (6), representing the
hysteretic connecting device, has the following linearized equivalent form:

_zþ CeD _yþ Kez ¼ 0. (12)

The two coefficients Ce and Ke can be evaluated in terms of the second moments of D _y and z, and, for n ¼ 1,
they have the following expressions [25]:

Ce ¼

ffiffiffi
2

p

r
b
ffiffiffiffiffiffiffiffiffiffiffi
E½z2�

p
þ g

E½D _yz�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½D _y2�

p
" #

� A, (13)

Ke ¼

ffiffiffi
2

p

r
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½D _y2�

q
þ b

E½D _yz�ffiffiffiffiffiffiffiffiffiffiffi
E½z2�

p
" #

, (14)

where the terms
ffiffiffiffiffiffiffiffiffiffiffi
E½z2�

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½D _y2�

p
are, respectively, the standard deviations of variables z and D _y̧ while

E½D _yz� is the covariance of the above mentioned variables.
2.5. Equation of motion in the space state

Having considered a stochastic input, the seismic excitation, the responses and the physical parameters of
the hysteretic device can be normalized in the following way:

€̂ybr ¼
€ybrðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2S0o1

p , (15)

ŷi ¼
yiðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2S0o1

p with i ¼ 1; 2, (16)

F̂ ¼
~Fffiffiffiffiffiffiffiffiffiffiffiffiffi

2S0o1

p ¼ Zyz, (17)
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ĝ ¼
ḡ
Zy

gclo
2
1, (18)

b̂ ¼
b̄
Zy

gclo
2
1, (19)

Â ¼
Ā

Zy

gclo
2
1, (20)

with:

Zy ¼
Fy

m1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2S0o1

p , (21)

gc ¼ kc=k2, (22)

where Zy is the normalized yield force of the hysteretic device and gc the stiffness ratio.
Considering these new definitions, Eqs. (2), (9) and (12) can be rewritten in the space state, as a system of

first-order differential equations:

_XðtÞ ¼ AXðtÞ þ BeðtÞ, (23)

in which:

XðtÞ ¼ ŷ1 ŷ2 z _̂y1
_̂y2

h iT
, (24)

B ¼ 0 0 0 1 1
� �T

, (25)

eðtÞ ¼ � €̂ygðtÞ, (26)

A ¼

0 0 0 1 0

0 0 0 0 1

0 0 �K̂e Ĉe �Ĉe

�o2
1 0 Zy �2x1o1 0

0 �o2
2 �Zy=m 0 �2x2o2

2
66666664

3
77777775
, (27)

where ‘‘T’’ indicates the transpose.
Expressions (24)–(27) are valid when seismic input is the WN. If seismic input is an FWN, described in

Section 2.3, the expressions (24)–(27) change as follows:

XðtÞ ¼ ŷ1 ŷ2 z _̂y1
_̂y2 ŷg

_̂yg ŷp
_̂yp

h iT
, (28)

B ¼ 0 0 0 0 0 0 �1 0 1
� �T

, (29)

eðtÞ ¼ � €̂ybrðtÞ, (30)
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A ¼

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 �K̂e Ĉe �Ĉe 0 0 0 0

�o2
1 0 Zy �2x1o1 0 o2

g 2xgog 0 0

0 �o2
2 �Zy=m 0 �2x2o2 o2

g 2xgog 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 �o2
g �2xgog o2

p 2xpop

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 �o2
p �2xpop

2
666666666666666664

3
777777777777777775

. (31)
2.6. Solution of equations of motion

Defining with GXX ¼ E½XXT� the covariance matrix of X, Lin has proved [31] that GXX satisfies the
following differential equation:

_GXX ¼ AGXX þGXXA
T
þ

p
o1

BBT. (32)

For the stationary response of the system under stationary random excitation, Eq. (32) reduces to the
algebraic Liapunov equation:

AGXX þGXXA
T
þ

p
o1

BBT ¼ 0. (33)

It is important to note that matrix A depends on GXX, since Ĉe and K̂e are related to response statistics.
Then Eq. (33) is nonlinear and an iterative procedure is required to solve it. To start the iteration, at the first
step, the solution of a linear system can be used, with a stiffness equal to the pre-yield stiffness, kc, of the
nonlinear device. Rearranging the covariance matrix of the response, GXX, in the vector G, to reach a
converged solution requires solving iteratively Eq. (33) until the quantity kGkþ1

�Gk
k=kGk

k is sufficiently
small.

The statistics E½D _y2�, E½D _yz� and so on, can be obtained from the covariance matrix of the output vector
Xe ¼ CX:

GXeXe
¼ E½XeX

T
e � ¼ CGXXC

T, (34)

where C is the output matrix.

3. Energy approach as design criterion of the dissipative connection

In order to give an optimal design of the nonlinear dissipative hysteretic device, different criteria may be
followed. The most useful criterion for seismic design refers to energy-based methods, [1]. Here, an energy
criterion associated with the concept of optimal performance of the dissipative connection is used. The idea is
that the connection performs at its best if it is capable of dissipating as much as possible of the energy input by
the earthquake.

In order to consider the energy balance in our problem, let us start from Eq. (2) where the relative energy
balance of the structural system is defined [32]:

EkðtÞ þ EdcðtÞ þ EeðtÞ ¼ EF ðtÞ þ EiðtÞ, (35)

where:

EkðtÞ ¼
1

2
ð _y2

1 þ m _y2
2Þ, (36)
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is the kinetic energy of the system;

EdcðtÞ ¼

Z t

0

2x1o1 _y
2
1 dtþ m

Z t

0

2x2o2 _y
2
2 dt, (37)

is the energy dissipated by linear viscous damping in the structural system;

EeðtÞ ¼
1

2
ðo2

1y
2
1 þ mo2

2y
2
2Þ, (38)

is the elastic energy of the system;

EF ðtÞ ¼ EeF þ EdF, (39)

is the energy associated with the device, which can be considered the sum of an elastic term, EeF, and of a
dissipative term, EdF.

Finally,

EiðtÞ ¼ �

Z t

0

€yg dy1 � m
Z t

0

€yg dy2, (40)

is the relative input energy.
It is noteworthy that each term of the energy balance (Eqs. (36)–(40)) is normalized with respect to the mass,

m1, of the first structure.
To select the optimal device, an energy performance index, named EDI, energy dissipation index, is used.

The index is defined as the ratio of the maximum value of the energy dissipated in the dissipation device, to the
corresponding maximum value of the energy input by the earthquake, both evaluated over time:

EDI ¼
ðEdFÞMAX

ðEiÞMAX

. (41)

In [2], it is demonstrated that maximizing EDI leads to satisfactory design for a large class of applications of
passive control.

In order to formulate the relative energy balance in the stochastic approach, Eq. (35) can be rewritten in
terms of the mean values:

E½Ek� þ E½Edc� þ E½Ee� ¼ E½EF � þ E½Ei�, (42)

where:

E½Ek� ¼
1

2
½E½ _̂y

2

1� þ mE½ _̂y
2

2��, (43)

E½Edc� ¼ 2 x1o1E½ _̂y
2

1� þ x2o2mE½ _̂y
2

2�

h i
t, (44)

E½Ee� ¼
1

2
½o2

1E½ŷ
2
1� þ mo2

2E½ŷ2
2�. (45)

To estimate the mean value of the energy associated to the connection, E½EF �, it is convenient to assume
that the force in the connection device has the following constitutive differential law (Eqs. (12) and (17)):

_̂
F ðtÞ ¼ �ZyĈeD _̂y� K̂eF̂ ðtÞ. (46)

A similar expression is obtained using a Maxwell model for the device. Such a model consists of a linear
spring, kM, and a linear viscous damper, cM, in series:

_F ðtÞ ¼ kMD _y�
kM

cM

F ðtÞ. (47)
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Dissipated and elastic energies associated to the Maxwell device have the following form:

E½EdF� ¼
E½F2�

cM

t, (48)

E½EeF� ¼
E½F 2�

kM

, (49)

where E½F2� represents the expected value of the restoring force of the device. Comparing the two expressions,
(46) and (47), leads to:

cM ¼ �Zy

Ĉe

K̂e

and kM ¼ �ZyĈe, (50)

and using Eqs. (48) and (49):

E½EdF� ¼ �K̂e
E½F̂

2
�

ZyĈe

t, (51)

E½EeF� ¼ �
E½F̂

2
�

ZyĈe

. (52)

Since Ĉe is negative, cM, kM, E[EdF] and E[EeF] are positive quantities.
This analysis shows that the equivalent linearization of a nonlinear hysteretic device identifies an equivalent

viscoelastic Maxwell model.
Considering the energy increments corresponding to a time increment Dt, the energy balance (42) is

rewritten as:

E½DEdc� þ E½DEdF� ¼ E½DEi�, (53)

or in explicit form:

2 x1o1E½ _̂y
2

1� þ x2o2mE½ _̂y
2

2�

h i
Dtþ K̂e

E½F̂
2
�

ZyĈe

Dt ¼ E DEi½ �. (54)

In Eqs. (53) and (54), both the expected values of elastic and kinetic energies disappear because they do not
depend on t.

At this point, a new definition of EDI index, used in the stochastic approach, can be derived considering a
time interval Dt:

EDI ¼
E½DEdF�

E½DEi�
¼

E½DEdF�

E½DEdc� þ E½DEdF�
. (55)

In order to maximize EDI, it is necessary: (i) to reduce the energy input and/or (ii) to increase the dissipative
capabilities by modifying the physical characteristics of the dissipative system.

In the passive control strategies, the capacity of dissipating energy is increased by using special devices
expressly made for the purpose.

In the particular case of WN input, Inaudi et al. [33], demonstrated that for single dof system the expected
value of the dissipated energy is:

E½Edc1� ¼ pS0t. (56)

Here, according with the normalization Eqs. (15)–(20), Eq. (56) becomes:

E½Edc1� ¼
p

2o1
t. (57)
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Consequently, for an uncoupled 2dofs, the total energy dissipated by the system is:

E½Edc1� þ E½Edc2� ¼
p

2o1
ð1þ mÞt. (58)

In this study it has been numerically verified that the total dissipated energy is equal to:

E½Edc1� þ E½Edc2� þ E½EdF� ¼
p

2o1
ð1þ mÞt. (59)

Each term depends on the structural parameters. This consideration leads to the important result that the
total dissipated energy is independent on the position and type of dissipative connection.

Consequently, Eq. (53), the increment of input energy has the following simple expression:

E½DEi� ¼
p

2o1
ð1þ mÞDt, (60)

which is particularly useful when performing an analysis with the WN process. In fact in this case, maximizing
the EDI index is equivalent to maximizing the dissipated energy E[DEdF]. On the contrary, for the FWN
process, the two quantities, mean value of DEdF and EDI, are not equal.

Finally, it is important to note that Eq. (55) does not depend on the time increment Dt, and that the same
expression of EDI in the stochastic approach can be obtained by writing the power balance.

4. Optimal design of the system with RPD and with white noise input

To evaluate the effectiveness of the solution, some response quantities will be considered, such as:

Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðŷiÞ

2
�

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðŷ0

i Þ
2
�

q
: relative displacements ði ¼ 1; 2Þ;

Ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ð €̂yiÞ

2
�

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ð €̂y

0

i Þ
2
�

q
: absolute accelerations ði ¼ 1; 2Þ;

DY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðŷ2 � ŷ1Þ

2
�

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðŷ0

2 � ŷ0
1Þ

2
�

q
: relative displacements between the two structures:

where ŷ0
i ;
€̂y
0

i are, respectively, displacements and absolute accelerations obtained for the uncoupled system.
The optimal passive control of adjacent structures excited by WN seismic input and connected by a rigid

plastic device, RPD, has been studied. In this case, the hysteretic device is defined only by the normalized yield
force Zy, whereas the two parameters l, stiffness ratio, and m, mass ratio, completely define the two structures.

For a given couple of values of the parameters l and m (m ¼ 1, l ¼ 5), the stochastic response, as a function
of Zy, has been evaluated, Fig. 5. The graph includes three typical situations: (i) no connection, Zy-0, (ii)
dissipative connection, 0oZyo10, and (iii) rigid connection, Zy410. The two limit cases, no connection and
rigid connection, respectively, are important for comparison purposes. The optimal yield force has been
selected as the one which maximizes the EDI index value. Such a force also produces a general and
simultaneous reduction of all response quantities. The effectiveness of the dissipative connection clearly results
by the comparison with the cases of the uncoupled and rigidly connected structures, since all response
quantities appear substantially reduced with respect to both cases. However, this is not always true, since there
are also cases where, for different values of l and m, in particular when the mass of the second structure is
comparatively smaller m ¼ 0.1, an increment of Y2 is observed, Fig. 6.

A concise presentation of the results of an extended parametric analysis is shown in Fig. 7, in which, for
some values of l, the optimal Zy values versus m are reported.

By looking at Fig. 7, it appears that all curves present a discontinuity for m ¼ l. This is because when the
two structures have the same vibration period, the connection cannot be activated. In any case, the optimal
parameter of the dissipative rigid plastic connection has a very regular behavior. Moreover, it is possible to
observe that for low m, the optimal Zy value increases with l while, for large m, it decreases with l. However,
the preliminary design of an hysteretic connection may be performed with reference to an RPD and Fig. 7
provides a very simple way for optimal design of hysteretic connections in adjacent structures.
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Moreover, it is possible to estimate the effectiveness of the connection in order to reduce the structural
response of the system. In fact, the response reduction by using a RPD, designed by using the spectrum of
Fig. 7 obtained under WN excitation, can be considered for different values of the structural parameters
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m and l, Fig. 8. By looking at the single quantity, there are more regions where the seismic response is reduced
with respect to no connection case. In particular, Fig. 8a shows that mol is preferable for reducing the
displacement of the first structure, Y1; moreover, the reduction improves when the relative stiffness l increases.
The best reduction of the second structure in term of displacement, Y2, instead, occurs when m4l. The use of
dissipative connections leads always to reduction of the absolute accelerations, A1 and A2, and the relative
displacement, DY, as Figs. 8b and c, respectively, show.

Indeed, these results can be used in different applications regarding some typical control and design
problems of adjacent structures. Different approaches may be considered with regard to (i) control strategies
and (ii) design parameters.

For case (i), two control strategies may be considered:
�
 Global protection,

�
 Selective protection.
In global protection, the attention is focused on protecting both structures. In selective protection, it is
important to reduce the vibration response of only one structure (here defined as structure 1, main structure),
with possible sacrifice of the other structure, (here defined as structure 2, auxiliary or secondary structure).

For case (ii), two situations may occur:
�
 The first is the design of the entire system, where all quantities, l, m and Zy, are design parameters; for the
WN input case, this situation coincides with the case in which the first structure is considered known;

�
 In the second situation, the two structures may pre-exist, and consequently l, m are considered known,

while only the connection device is unknown. In this case the design problem is to determine the yield force
of the hysteretic device.

It is clear that the two approaches presented here must be considered together. In fact, there could be the
situation where the first structure exists, whereas the second structure and the connection have to be designed.
In addition, it may be requested that the entire system be protected against earthquake damage. In this case,
for example, the l and m values can be selected by the graphs of Fig. 8. If the goal is protecting both structures,
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a good choice of the structural parameters could be m ¼ 0.8 and l ¼ 5. Using RPD leads to reduction of
�60% for Y1, the displacement of the first structure, and �30% for Y2. Moreover, normalized accelerations
A1 and A2 are reduced by over 40%. Corresponding to these values of l and m, the optimal yield force Zy ¼ 2.1
of the hysteretic device is obtained by using the spectrum of Fig. 7.

Similarly, when the attention is focused on the main structure only (selective protection), l could be chosen
equal to 5, as the previous case, while m could have small values (0.1–0.2). This situation can represent the case
of structural control with dissipative bracing. The protected structure has a reduction of �70% for the
displacement, while the acceleration is reduced by over 40%. Finally, by using curves of Fig. 7, the selection of
the optimal parameter for the hysteretic connection leads to Zy ¼ 2.2.

5. Applications of the methodology to practical problems

The optimal design methodology defined in the last section, can be easily applied and extended to solve
practical problems by using more realistic modelling, for both the device and the seismic input.

In fact, considering the difficulties of realizing a RPD, an elastic plastic device, EPD, should be considered.
The EPD is characterized by two parameters, Zy and gc, Eqs. (21) and (22). In the RPD the parameter gc was
omitted because it approaches infinity (gc-N). As an example, for given values of l and m, Fig. 9 shows
contour lines of the EDI index versus Zy and gc. An important observation can be immediately made: the EDI
index does not show a well defined maximum versus gc. This means that, while it is possible to select an
optimal value for the yield force, ZyE1.5, the same is not possible for the relative stiffness gc. However, it
results also that, for Zy ¼ 1.5, gc ¼ 1 already leads to a value of the index close to its maximum. This is also
confirmed by Fig. 10, where, for the optimal value of Zy, the response quantities are presented as function of
gc. For gcX1 the EDI index does not practically increase, while at gc ¼ 1 all the response quantities appear
substantially reduced. This conclusion, which was already suggested in a previous work, De Angelis [3], allows
us to design an EPD by fixing gc ¼ 1, and by optimizing only Zy.

Fig. 11 presents the optimal design curves of the Zy parameter of an EPD with gc ¼ 1 compared with
corresponding curves obtained for an RPD. The two design spectra appear very close to each other expecially
for high values of the stiffness ratio l. From this observation, it emerges that the optimal design for an
hysteretic connection is simply carried out by fixing gc ¼ 1 and by using, for the optimal Zy parameter, the
design spectrum of Fig. 7. For this reason, an EPD is adopted in the following applications.
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The methodology may be also applied even if a filtered white noise is applied. As an example, the FWN
defined in Section 2.3 has been used. Since in this case the excitation depends on frequency (or equivalently on
period), as shown in Fig. 4, a further parameter, the natural period of the first structure T1, has been
considered.
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It is important to remark that the two energy quantities, the mean value of DEdF and EDI, are not equal, as
previously discussed. In fact, in this case, the mean value of DEi is not a constant value like in WN, Eq. (60). In
this case, EDI index has been adopted as energy criterion.

In this context the optimal design of the connection has been carried out by performing a parametric
analysis where the varying parameters are l, m, Zy and T1.

Fig. 12 shows, for the EPD, some examples of optimal value of Zy versus T1, for different values of l (1, 2, 5)
and m ¼ 0.5. All response quantities and EDI versus T1 for different values of l (1, 2, 5) and m ¼ 0.5 are
presented in Fig. 13. In all cases, the period T1 is greater than the period T2, implying that the first structure is
more flexible than the second structure.

For given values of l, m and T1 by maximizing EDI index versus Zy, each optimal force and the
corresponding response quantities, are presented in Figs. 12 and 13.

It is observed that the optimal Zy parameter, depends on the period. Moreover, different values of Zy,
depending on the stiffness ratio l, are obtained, however each curve has a regular and similar shape versus T1.
Spectra as the one depicted in Fig. 12, can be used to design the optimal hysteretic device; in this case the
variables which need to be used are l, m and T1. For the structural parameters l and m used in this particular
study, the optimal Zy is obtained from the graph by selecting the value corresponding to the natural period of
the first structure T1. By looking at Fig. 13, it is important to notice how, in all the examples, EDI index
appears almost constant versus the period T1. Moreover, the EDI index appears to increase when the
difference between l and m increases. In fact the greatest value for EDI is obtained when l ¼ 5, which
corresponds to the maximum value of relative stiffness, Fig. 13c. In this situation, the two structures have very
different dynamic characteristics and a large reduction of the seismic response of the flexible structure, with
respect to the case with no connection, is observed. As for the optimal hysteretic device, the curves of Fig. 13
can be used to obtain the response reduction of the controlled system. In fact, by selecting the proper
structural parameters m and l, the reduction of each response quantity is obtained by selecting the values
corresponding to the period of the first structure T1.

Having considered a wide range of variation of the parameters l and m (here not reported), the results lead
to the conclusion that, as the stiffness ratio l is large and the mass ratio m is small, the connection works at its
best in protecting the flexible structure, whereas the stiff structure is sacrificed (an amplification response is
observed). Instead when the quantities m and l tend to have similar values, a reduction of all the responses for
both structures is obtained.

6. Conclusions

An optimal methodology for the design of hysteretic dampers used as connection for two single dof systems
has been proposed. For the hysteretic dampers the Bouc–Wen model has been adopted and a simplified
solution of the nonlinear problem has been carried out using a stochastic linearization technique. To select the
optimal hysteretic devices, an energy performance index, named EDI, has been introduced. This index is
defined as the ratio of the maximum value of the energy dissipated in the devices, to the corresponding
maximum value of the input energy.

At first a simple rigid plastic device, RPD, behavior is considered and the seismic excitation is modelled as a
Gaussian zero mean white noise stochastic process.

In this case, the main results can be summarized as follows: (i) very simple curves are obtained for the
optimal design of the hysteretic devices; (ii) the effectiveness of the RPD is evaluated by looking at the
important response quantities as functions of the structural parameters; (iii) finally, some typical control
applications have been discussed as a function of the control strategy, global and selective protection, and
design parameters.

The optimal design methodology has been applied to solve practical problems by using more realistic
modelling, for both the device and the seismic input.

With respect to the device, the difficulty to realize in the reality an RPD conducts to carry out an EPD
characterized by the two parameters Zy and gc. It has been demonstrated that the relative stiffness gc can be
chosen equal to one. The optimal design of the EPD with gc ¼ 1 is carried out in comparison to the optimal
design of the RPD. Considering the filtered white noise input, the same procedure leads to optimal design of
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the connection, now depending also on the period of the first structure T1. Considerations about the behavior
of response quantities versus T1 are finally made.

It is important to remark that the proposed methodology refers to a typical situation in civil engineering.
However, in general, the procedure can simply be applied to solve any problem in other engineering fields,
which refers to two structures, or two parts of the same structure, excited by an input that can be represented
by a probabilistic approach.
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